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Abstract

Rhodnius prolixus is a Hemiptera that feeds exclusively on vertebrate blood in all life stages. Its salivary glands produce potent
pharmacological substances that counteract host hemostasis, including anti-clotting, anti-platelet, and vasodilatory substances. To
obtain a further insight into the salivary biochemical and pharmacological complexity of this insect, a cDNA library was ran-
domly sequenced, and salivary gland homogenates were fractionated by HPLC to obtain aminoterminal sequences of abundantly
expressed proteins. Results indicate a remarkable expansion of the lipocalin family in Rhodnius salivary glands, among other pro-
tein sequences described. A summary of 31 new full length proteins deducted from their mRNA sequence is described, including
several new members of the nitrophorin, triabin, and pallidipin families. The electronic version of the complete tables is available
at http://www.ncbi.nlm.nih.gov/projects/vectors/rhodnius_prolixus.
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1. Introduction

Rhodnius prolixus is a hematophagous Hemiptera
that feeds exclusively on blood throughout its entire
life (Buxton, 1930). This bug is also a main vector of
Chagas’ disease in the northern part of South America
and in some arcas of Central America (Dias et al.,
2002). Rhodnius is also a good laboratory model for
both Chagas’ disease and basic biological studies
because of the ease with which it is reared, compara-
tively short life cycle, and remarkable biochemical
and physiological changes following a blood meal
(Wigglesworth, 1972).

Like most blood-sucking arthropods that have been
studied to date (Ribeiro and Francischetti, 2002), R.
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prolixus is well equipped to disarm the host’s hemo-
static machinery, triggered to prevent blood loss fol-
lowing tissue injury. When probing in their victim’s
skin for blood, Rhodnius inject a salivary cocktail that
contains apyrase, an enzyme that hydrolyses ADP, a
nucleotide released by injured cells and a potent
inducer of platelet aggregation (Sarkis et al., 1986).
Additionally, a lipocalin with very high affinity for
ADP mops up any residual nucleotide (Francischetti
et al., 2000). Serotonin and thromboxane A,, which are
potent vasoconstrictors released by platelets, are also
neutralized (Ribeiro, 1982; Ribeiro and Sarkis, 1982).
Several distinct nitrophorins (NP), which are heme-
containing lipocalins, carry nitric oxide (NO) from the
salivary glands to the injured tissue, causing vaso-
dilation and further inhibiting platelet aggregation
(Ribeiro et al., 1993; Champagne et al., 1995). These
NP also bind histamine with high affinity (Ribeiro and
Walker, 1994; Andersen et al., 1998), and one, NP2,



62 J.M.C. Ribeiro et al. | Insect Biochemistry and Molecular Biology 34 (2004) 61-79

also inhibits the Xase complex of the intrinsic pathway
of the blood coagulation cascade (Ribeiro et al., 1995;
Zhang et al., 1998; Isawa et al., 2000). An additional
lipocalin, biogenic amine binding protein (BABP),
removes serotonin and adrenergic mediators of vaso-
constriction (Andersen et al., 2003). Although the sal-
iva of most blood-sucking arthropods contains at least
one anti-clotting, one anti-platelet, and one vasodila-
tory substance, the molecular nature of these com-
pounds is very diverse, even in species belonging to the
same family (Ribeiro and Francischetti, 2002).

The molecular diversity of hematophagous insect
saliva, which may have arisen as a consequence of con-
vergent evolution and/or a fast rate of evolution in sal-
iva-expressed genes, represents a rich field for the
discovery of novel pharmacologically active compounds
and for understanding the evolutionary mechanisms
leading to the insect’s adaptation to this feeding habit.
Toward this end, we have recently started to describe
the sialome (=set of RNA message + set of proteins
found in salivary glands) of hematophagous insects and
ticks (Francischetti et al., 2002b; Valenzuela et al.,
2002b, c¢). These studies demonstrate that the sialome
from hematophagous insects and ticks is more complex
than previously expected and contains many proteins to
which we cannot yet ascribe a function. Presently, we
initiate description of the sialome of R. prolixus, which
is very rich in expressing lipocalins among other pro-
teins. Lipocalins serve different roles, primarily as car-
riers of small ligands in vertebrates and invertebrates
(Flower et al., 2000), although some have enzymatic
activity, such as the glutathione-independent pros-
taglandin D, synthase (Urade and Hayaishi, 2000).
Lipocalins were not found in the saliva of other blood-
sucking insects, but they occur in tick saliva (Paesen
et al., 2000) serving an anti-histaminic and anti-sero-
tonin role. Other proteins are also described in this
work, which should help in our understanding of the
evolution to blood feeding by insects.

2. Materials and methods
2.1. Rhodnius prolixus

R. prolixus were reared in the laboratory at 27 °C,
70% relative humidity, and 16:8 h light cycle. They
were fed at three-week intervals using a jacketed arti-
ficial feeder containing heparinized rabbit blood kept
at 38 °C with a water bath circulator. The bugs were
kept in cages containing vertical strips of coarse filter
paper of chromatographic purity. A PCR-based sali-
vary gland cDNA library was made as described before
(Francischetti et al., 2002a, b). The library titer was
0.5 x 10°/ml and it was not further amplified. Salivary
glands were obtained from Vth instar nymphs dissected

at days 5, 7, 10 and 14 following the blood meal to
obtain an average representation of the messages
expressed while the gland is replenishing its contents
(Nussenzveig et al., 1995). This larval instar was chosen
because their salivary glands contain the largest
amount of protein of any instar, including adults
(Ribeiro, unpublished), and because it has been shown
to contain all nitrophorin forms expressed in nymphal
instars (Moreira et al.,, 2003). For chromatographic
experiments, glands from starved Vth instar nymphs
were dissected between 5 and 30 days after the molt,
because they contain the full set of proteins required
for the salivary gland function during the feeding
process (Nussenzveig et al., 1995). Previously, it had
been estimated that ~90% of the salivary protein in
starving Rhodnius salivary glands is of a secretory
nature, and is contained within the large bladder-like
cavity of Rhodnius glands (Nussenzveig et al., 1995;
Ribeiro and Garcia, 1980).

2.2. Chromatography

Chromatographic experiments used 0.24 ml bed vol-
ume columns of strong cation (Mono-S) and strong
anion (Mono-Q) ion exchangers obtained from Amer-
sham Biosciences (Piscataway, NJ, USA). A CM4100
pump and a SM4100 dual wavelength detector (both
from ThermoSeparation Products, Rivera Beach, FL,
USA) were used. To elute the proteins of interest, the
ion-exchange columns were submitted to 2 ml gradients
of NaCl from 0 (solution A) to 1 M (solution B) for
60 min at a flow rate of 50 pl/min. For the cation
exchange column, the buffer used was 50 mM sodium
acetate at pH 5.0 and for the anion exchange, 50 mM
Tris—Cl at pH 8.0. To produce reliable gradients of this
small nature with regular HPLC pumps, we introduced
a 2 ml loop after the pump followed by a three-way
valve (port A, pump; port B, waste; port C, sample
injector) before the sample injector. With the three-way
valve connecting the pump to the waste, a gradient
from 0% to 100% solution B was made with the flow at
1 ml/min for 2 min + time of dead volume, after
which the pump switches to 50 pl/min. The times of
dead volumes were measured previously by observing
the time it took for the change in UV absorbance when
water is immediately switched to an organic buffer sol-
ution at 1 ml/min. When the pump switches to 50 pl/
min, the three-way valve is manually switched to con-
nect the gradient loop to the injector sample loop,
which was previously loaded with sample. During the
run, the pump delivers 100% solution B. The eluate
was monitored for UV absorption (280 nm) as well as
for absorbance at 404 nm to monitor the elution of
NP. Fractions of 1 min intervals (50 pl) were collected
into polypropylene 96 well plates using a 203B fraction
collector (Gilson, Middleton, WI, USA). Fractions of
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interest had 40 pl removed and diluted with an equal
volume of 20% methanol containing 0.4% tri-
fluoroacetic acid (TFA) and were applied to a ProSorb
cartridge (Perkin Elmer, Foster City, CA, USA) pre-
viously treated with 10 pl of methanol. After absorp-
tion of the solution through the polyvinylidene
difluoride (PVDF) membrane, the cartridge was
washed three times with the same volume of 10% meth-
anol containing 0.1% TFA. To further characterize the
complex protein mixture eluting after the NP peak on
the SCX experiment (Fig. 2), we submitted 100 pairs of
salivary glands to SCX in a larger (25 x 1 cm) column,
and the region of interest was mixed 1:1 with saturated
NH4SO,4 and applied to a Phenyl-TSK column from
BioRad (Hercules, CA, USA) equilibrated with 2 M
NH4SO4 + 20 mM Hepes buffer pH 7.4 at 0.5 ml/min.
A gradient to 20 mM Hepes in 60 min eluted the pro-
teins. The eluate was monitored at 280 nm, and peaks
of interest were applied to ProSorb cartridges as above.

2.3. Sequencing

Bioinformatics procedures were as by Francischetti
et al. (2002b) and Valenzuela et al. (2002¢) except that
the clustering of the cDNA sequences was
accomplished using the CAP program (Huang, 1992)
after initial clustering of the database following a
blastn (Altschul et al., 1997) of the database against
itself and reading the output to join those sequences
that had at least 95 identical residues in a window of
100 residues. Accession numbers for the National Cen-
ter for Biology Information (NCBI) databases are
given as gi|XXXX where XXXX is the accession num-
ber. Signal peptide predictions were done with the Sig-
nalP program (Nielsen et al., 1997). Trans-membrane
helices were predicted with the TMHMM program
(Sonnhammer et al., 1998). Sequence alignments and
phylogenetic tree analysis used the ClustalW package
(Thompson et al., 1994). Phylogenetic trees were con-
structed by the neighbor-joining method (Saitou and
Nei, 1987). Bootstrapping of phylogenetic trees was
done with the Clustal package for 1000 trials. Phylo-
genetic trees and dendograms were formatted with
TreeView (Page, 1996) using the ClustalW output. The
electronic version of the complete tables in Microsoft
Excel format with hyperlinks to web-based databases
and to Blast results is available at http://www.ncbi.
nlm.nih.gov/projects/vectors/rhodnius_prolixus.

3. Results

To obtain an insight on the salivary transcriptome of
R. prolixus, we randomly sequenced 539 cDNA clones
from a salivary gland cDNA library from this insect
and organized these into 252 clusters of related sequen-
ces after assembly. Using the BLAST package of pro-

grams (Altschul et al., 1997), we compared the
sequence of each cluster in the database with the non-
redundant protein and nucleotide sets of the NCBI and
the gene ontology database (Ashburner et al., 2000;
Lewis et al., 2000; Hvidsten et al., 2001). The trans-
lated sequences were also screened with RPSBlast for
protein motifs of the combined set of Pfam (Bateman
et al., 2000) and SMART (Schultz et al., 2000) data-
bases (also known as the Conserved Domains Data-
base—CDD). Finally, we submitted all translated
sequences (starting with a Met) to the SignalP server
(Nielsen et al., 1997) to detect the presence of signal
peptides indicative of secretion. With this information,
the clustered database was annotated and classified
into three categories of clusters: S, those associated
with possibly secreted products, H, those possibly asso-
ciated with housekeeping functions, and U, those of
unknown function. Accordingly, 114 cDNA clusters
containing a total of 127 sequences (23.5% of the tran-
scriptome) were classified as being associated with pro-
ducts of the housekeeping class. These clusters have an
average of 1.14 sequences per cluster. This contrasts
with the 74 clusters containing 345 sequences (64.0% of
the transcriptome) classified as associated with secreted
products and providing for an average of 4.66 sequen-
ces per cluster. These results of average cluster size are
very significant (P< 0.01 »* test), and were observed
also in other transcriptome analysis of salivary glands
in Aedes aegypti, An. gambiae and Ixodes scapularis
(Francischetti et al., 2002b; Valenzuela et al., 2002b, c),
where clusters of putatively secreted proteins were
abundantly expressed. Finally, 67 sequences (12.4% of
the transcriptome) in 64 clusters were classified as
being associated with products of unknown function.

3.1. Description of clusters associated with transcripts
having probably a housekeeping function

From the 114 clusters of cDNA sequences associated
with probably housekeeping-related products, only a
few have more than one sequence per cluster, with a
maximum size of three sequences per cluster. Twenty-
nine of these clusters code for products associated with
the protein synthetic machinery, including rRNA, and
various ribosomal proteins. Four transcripts code for
proteins associated with secretory pathways and three
for proteins associated with protein modification pro-
ducts including a sulfotransferase and a mannosyl-
transferase. Seventeen transcripts coded for enzymes
associated with energy metabolism, four coded for
enzymes associated to lipid metabolism, and one tran-
script coded for uroporphyrinogen decarboxylase, an
enzyme involved in heme synthesis. Seven clusters were
associated with cytoskeleton proteins such as annexin
and tubulin. Six transcripts were associated with the
proteasome machinery, and three others with
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transporters, including two for a UDP-Gal transporter.
Seventeen transcripts were associated with signal trans-
duction products and eight with nuclear regulation.
When combined, these 25 transcripts include different
members of intracellular signaling cascades ranging
from surface receptors and adapter proteins to enzymes
and transcriptional factors. It is noteworthy that
among the transcripts related to signal transduction
four display homology with members of the GTPase
superfamily (ras, rab, sarl/arf, ran) which are involved
in gene expression, vesicle trafficking, nucleocyto-
plasmic transport and cytoskeletal organization (Takai
et al., 2001). Therefore, a sophisticated system of regu-
lation of protein synthesis, sorting and exocytosis must
work during refilling of glands as depicted by the num-
ber and the diversity of transcripts found. Finally, eight
transcripts code for proteins that are well conserved
among cukaryotes, suggesting a fundamental role in
cellular processes, although their function is unknown.

3.2. Description of the clusters of transcripts in the
salivary glands of R. prolixus probably associated with
secretory products

Remarkably, of the 74 clusters of transcripts possibly
associated with secretory products, 62 code for proteins
of the lipocalin family (Flower et al., 2000) (Table 1).
Of these 62 lipocalin clusters, 27 code for proteins hav-
ing similarity to NP. NP are NO-carrying proteins dis-
covered in Rhodnius (Champagne et al.,, 1995) for
which four protein sequences are known. Their amino
acid sequences do not reveal similarity to lipocalins,
but their crystal structure is typical of this large family
of proteins (Andersen et al., 1997, 1998; Weichsel et al.,
1998). NP account for the deep cherry color of Rhod-
nius salivary glands and may constitute half of the pro-
teins in Rhodnius salivary glands (Wigglesworth, 1942;
Champagne et al., 1995). We have also recently repor-
ted on a novel Rhodnius salivary protein similar to NP-
2; this protein, however, does not bind heme and NO
but rather biogenic amines such as adrenaline and sero-
tonin (Andersen et al., 2003). This protein may be
responsible for the anti-serotonin activity reported in
Rhodnius saliva (Ribeiro, 1982).

Five of the 27 clusters of cDNA sequences shown in
Table 1 represent the expected sequences for NPI,
NP2, NP3, NP4, and BABP. The remaining 22 clusters
code for proteins having diverse similarity to any of
these five proteins. In a few instances, these clusters
may represent truncated cDNA or alleles of the five
known NP, but it appears that most are due to differ-
ent gene products.

The remaining 35 clusters of lipocalin transcripts
were found to be similar to salivary anti-hemostatic
lipocalins from triatomine bugs previously described as
RPAI (Rhodnius platelet aggregation inhibitor) and the

Triatoma triabin (Noeske-Jungblut et al., 1995), proca-
lin (Paddock et al., 2001), or pallidipin (Noeske-Jung-
blut et al., 1994). Thirty-four of the 35 clusters display
the Pfam motif for triabin (Flower et al., 2000). These
clusters include two perfect matches to anti-platelet
salivary proteins previously described in Rhodnius as
RPAI-1 and RPAI-2. The remaining clusters similar to
RPAI produce various degrees of sequence similarities
to RPAI-1 or RPAI-2 and may represent novel salivary
proteins in Rhodnius. RPAI-1 and RPAI-2 inhibit pla-
telet aggregation by strongly binding to adenosine
nucleotides (Francischetti et al., 2000). ADP at the sub-
micromolar concentrations normally found in the
plasma decreases the threshold for collagen-induced
platelet aggregation. At these ADP levels, salivary
apyrase is not an efficient scavenger of ADP due to its
K, at >20 uM (Sarkis et al., 1986), but the salivary
RPAI, with a nanomolar affinity for ADP, efficiently
scavenges the nucleotide and raises the threshold con-
centration for collagen-induced aggregation (Fran-
cischetti et al., 2002a). Pallidipin produces a similar
inhibition of platelets and may act by the same mech-
anism (Noeske-Jungblut et al., 1994; Haendler et al.,
1996) despite claims of its activity on the collagen
receptor. These novel proteins may, accordingly, act by
removing mediators of hemostasis or as anti-clotting
agents. Finally, a cluster with five sequences was not
only found similar to RPPA-2 but also matching a
lipocalin in the gene ontology database annotated as
prostaglandin H, isomerase/PGD, synthase, suggesting
that this protein product could act by transforming
PGH, (normally produced by activated platelets) into
the vasodilatory and anti-platelet PGD».

Several clusters matched Triatoma pallidipennis tria-
bin. Triabin is a thrombin inhibitor, a function unrelated
to its ability to bind small ligands (Noeske-Jungblut
et al., 1995; Glusa et al., 1997), as is also the case with
NP2, which, in addition to binding heme and NO, inhi-
bits factor VIII in the clotting cascade. Although all
anti-clotting activities from Rhodnius salivary glands
may be explained by NP2 and no other inhibitor appears
to block other sites of the clotting cascade other than in
the extrinsic Xase complex (Ribeiro et al., 1995), the
possibility of finding another clotting inhibitor in Rhod-
nius salivary glands remains a possibility. It is also inter-
esting that several clusters of transcripts produce similar
matches to both NP and triabin and have the NP, tria-
bin, and lipocalin Pfam signatures. These sequences may
represent evolutionary intermediate stages between the
lipocalins and NP and between the lipocalins and tria-
bins, most of which do not have the Pfam lipocalin sig-
nature.

Twelve of the 74 clusters associated with putative
secreted proteins (Table 1) do not belong to the lipoca-
lin family. Of these, eight represent sequences coding
for proteins for which a protein family or function can
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be tentatively assigned. These include two clusters cod-
ing for proteins with high similarity to the antigen 5
family, which is a widespread extracellular family of
proteins found in animals and plants (Schreiber et al.,
1997), most of unknown function. Members of this
protein family are found in salivary glands of sand
flies, mosquitoes, and tsetse (Charlab et al., 1999;
Li et al, 2001; Valenzuela et al., 2001, 2002c;
Francischetti et al., 2002b) and are here described for
the first time in the salivary glands of a Hemiptera.
One cluster contains a sequence coding for a low com-
plexity basic protein with a clear signal peptide, indica-
tive of secretion. This basic putative protein yields a
Pfam motif of protamines and histones. Two clusters
produce substantial similarities to a protein previously
deposited in the NCBI database as Rhodnius apyrase,
because it purified together with two other lipocalins
when attempts were made to isolate Rhodnius salivary
apyrase (Champagne and Ribeiro, unpublished). The
two putative proteins have strong similarities to inosi-
tol polyphosphate 5-phosphatase and were thought to
be responsible for the apyrase activity of saliva. We
have now expressed one of these clones and will report
elsewhere that it indeed contains inositol phosphatase,
but no apyrase activity (Andersen, Francischetti and
Ribeiro, manuscript in preparation). Another cluster
codes for a putative protein with strong similarities to
insect cytochrome P450 proteins, which are enzymes
that oxidize a very broad range of substrates including
insecticides, allochemicals, and hormones. It is possible
that this secreted P450 enzyme participates in the oxi-
dation of arachidonic acid metabolites or in oxidizing
serotonin, as does the salivary peroxidase of anophe-
lines (Ribeiro and Nussenzveig, 1993). A low com-
plexity protein with a Pfam match to mucins was
coded by another cluster. This protein could help to
lubricate the feeding canal of Rhodnius or interact with
host matrix proteins. Finally, two sequences coding for
carbohydrate-related functions were found. One
sequence coded for a protein with very strong simi-
larity to mannose-binding lectins of insects and mam-
mals. Hemagglutinins in the salivary glands of
anophelines are common (Metcalf, 1945; Gooding,
1972) but have not been found previously in Rhodnius
(Gregorio and Ratcliffe, 1991). Their role in feeding is
not clear, but they may play a role in insect immunity,
as was proposed for several immune-related salivary
proteins found in mosquitoes (Francischetti et al.,
2002b; Valenzuela et al., 2002c). Alternatively, this lec-
tin could be confined to the endoplasmic reticulum or
the Golgi apparatus, and indeed, it has similarities to
proteins annotated as such. A second sequence, with
substantial similarity to melibiase, a sugar hydrolyzing
enzyme, was also found.

Finally, three clusters have transcripts coding for
possibly secreted proteins, but their family or function

is unknown. These clusters code for proteins of low
complexity, and include an abundant cluster having 18
transcripts (Table 1).

3.3. Preliminary characterization of the salivary
proteome of R. prolixus

In our previous work (Francischetti et al., 2002b;
Ribeiro and Francischetti, 2002; Valenzuela et al.,
2002b, c), we have resorted to 1D sodium dodecyl sul-
fate polyacrylamide electrophoresis (SDS-PAGE) to
separate the salivary proteins of hematophagous insects
and ticks. Most Rhodnius salivary proteins, however,
are lipocalins having 18-22 kDa in molecular mass,
leading to poor separation of the proteins. We now uti-
lize ion-exchange chromatography to separate the pro-
teins. Five pairs of salivary glands from Vth instar
nymphs (~0.5 mg protein) were submitted to anion
exchange chromatography, and selected UV absorbing
peaks were applied to PVDF membranes using a Pro-
sorb cartridge (see Materials and methods for details)
(Fig. 1). The non-retained portion of this anion
exchange chromatogram was acidified to pH 5.0 and
submitted to cation exchange column chromatography.
Selected protein peaks were applied to PVDF mem-
branes to obtain amino terminal amino acid sequence
by Edman degradation (Fig. 2). Because we observed
considerable protein complexity of the post-NP peak in
the cation exchange chromatogram (NP absorb at 404
nm), we submitted this region (indicated by a bar in
Fig. 3A) to hydrophobic interaction chromatography
(HIC) and adsorbed selected peaks to a PVDF mem-
brane to obtain Edman degradation information. In
most cases, Edman degradation results yielded multiple
amino acids per sequence cycle, but these could be
deconvoluted using an in-house program that com-
pared all possible sequences obtained by Edman degra-
dation with all possible protein translation products
deduced from the cDNA library. This program has
previously been described in more detail (Valenzuela
et al., 2002c). Table 1 summarizes the results obtained
from these experiments when separating R. prolixus
proteins into 26 fractions by ion-exchange chromato-
graphy (Figs. 1 and 2) and into an additional 9 frac-
tions by HIC (Fig. 3). These 35 Edman degradation
experiments allowed identification of 22 cDNA clusters
matching the observed sequences. In some cases, no
unambiguous assignment to a cDNA cluster could be
made. For example, the sequence KXTQNAIAQTGF-
KKDQYFNG could be derived ecither from NP4
(where X matches a Cys) or from a cluster coding for a
protein with at least 86% identity to NP4 (Table 1).
The amino terminal sequences of most of the already
known salivary proteins from R. prolixus were found in
these chromatographic experiments as follows: NP1,
NP3, NP4, BABP (which was actually identified during
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Fig. 1. Strong anion exchange chromatography of homogenized R.
prolixus salivary glands. Five pairs of salivary glands were applied to
the column, which was eluted as indicated in Materials and methods.
(A) The column effluent was monitored at 404 nm to show retention
of heme proteins. (B) Column effluent monitored at 280 nm. (C)
Expansion of the chromatogram in (B), indicated by the arrows. The
bars with numbers above or below indicate the fractions used to
obtain amino terminal sequence information by Edman’s degradati-
on.

the course of this work), and RPAI-1. Among the
novel sequences identified by Edman degradation are
novel NP, triabin-like molecules, RPAI-1-like proteins,
a protein member of the antigen 5 family, and two
other protein sequences of unknown function. Full
length sequence of the cDNA from these clusters may
help to identify these proteins. We accordingly pro-
ceeded to obtain full length sequence information for
the clusters possibly associated with the Edman
sequences, as well as of other clusters that might be
involved in blood feeding.

3.4. Characterization of 31 novel full length cDNA
clones from R. prolixus salivary glands

3.4.1. Lipocalin peptides

Six of the 30 novel Rhodnius full length sequences
code for proteins with a Pfam NP domain (Table 2)
with significant similarities to NP and BABP. These
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Fig. 2. Strong cation exchange from the void volume (first 20 min)
of the strong anion exchange chromatogram shown in Fig. 1. (A) The
column effluent was monitored at 404 nm to show retention of heme
proteins. (B) Column effluent monitored at 280 nm. (C) Expansion of
the chromatogram in (B). (B,C) The bars with numbers above or
below indicate the fractions used to obtain amino terminal sequence
information by Edman’s degradation.

predicted polypeptides have all a signal peptide indica-
tive of secretion. Alignment of these novel proteins
with the four NP and the BABP is shown in Fig. 4A.
Notice that two of the NP are shorter than the other
NP proteins, one of which has a polylysine tail that is
not an artifact due to a missing stop codon; four inde-
pendent sequences confirmed the final sequence. A
phylogenetic tree (Fig. 4B) indicates four robust clades
for these proteins consisting of the sole short NP pro-
tein containing the polylysine tail (RPSNP3A); the
clade containing BABP with three novel putative pro-
teins (RPNP3B, RPNP4B, and RPNP1A); the clade
containing NP1, NP4, and the novel RPNP4A; and the
clade containing NP2, NP3, and the short NP2-like
protein named RPSNP2A. Notice that most of this
family has four conserved cysteines, with the exception
of the short NP (Fig. 4A). Edman degradation pro-
ducts of the chromatographic experiments (shown in
Figs. 1-3) had sequences matching three of the six
novel NP, as indicated in Table 2.
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Fig. 3. (A) Strong cation exchange chromatography of 100 pairs of
homogenized salivary glands of R. prolixus. The bar in (A) represents
the fractions submitted to hydrophobic interaction chromatography
shown in (B). The bars in (B) represent fractions submitted to Edman
degradation to obtain amino terminal sequence information.

Four novel cDNA sequences match proteins pre-
viously described as Rhodnius platelet aggregation
inhibitor proteins (RPAI) (Francischetti et al., 2000).
These four sequences have a clear signal peptide indica-
tive of secretion. RPAI-1 has been shown (Fran-
cischetti et al., 2000, 2002a) to bind adenosine
derivatives and inhibit platelet aggregation. Except for
RPAI-6, which has five cysteines, the remaining
sequences have six conserved cysteines indicative of
three disulfide bonds (Fig. 5SA). The phylogenetic tree
in Fig. 5B indicates that this family of proteins prob-
ably derives from ancient gene duplication events fol-
lowed by divergence. The role of these novel proteins is
not known. They could bind adenosine, as previously
demonstrated for RPAI-1, or bind to other pro-hemo-
static/inflammatory substances.

Triabin is an anti-thrombin peptide obtained from 7.
pallidipennis salivary glands (Noeske-Jungblut et al.,
1995; Glusa et al., 1997). Four full length cDNA clones
have similarity to triabin (25-28% identity, 40-50%
similarity) and weaker similarity to RPAI and NP
(Fig. 6A) (Table 2). These proteins have a signal pep-
tide indicative of secretion. The amino terminal
sequence of Rptriab2 was found in one of the anion
exchange chromatographic fractions (Table 2). These
protein sequences have six conserved cysteines except
for RPTriab3 and RPTriab4, which have only five of
the conserved cysteines; however, these last two pro-
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teins have in common a significant lysine repeat in their
carboxyterminal region, as did one of the short NP
(Fig. 4A). Other conserved domains are shown in
Fig. 6A. Although the anterior midgut of Rhodnius has
significant anti-thrombin activity (Hellmann and Haw-
kins, 1965), no such activity is found in pure salivary
gland homogenates. The function of Rhodnius triabins
remains to be investigated.

Two full length ¢cDNA sequences predict proteins
with similarities to a salivary Triatoma allergen named
procalin (Fig. 7). The amino terminal sequence of
RPPROCALI1 was found by Edman degradation in
fractions of the anion exchange column experiment
(Table 2). The role of these proteins in feeding is
unknown, but they may be secreted, as indicated by the
presence of a signal peptide.

Pallidipin is an inhibitor of collagen-induced platelet
aggregation found in the salivary glands of T. pallidi-
pennis (Noeske-Jungblut et al., 1994). Two full length
cDNA clones from Rhodnius with similarities to pallidi-
pin were accordingly named RPPAL-1 and RPPAL2.
They have six conserved cysteines and a few other con-
served amino acid residues (Fig. 8). Both have a signal
peptide indicative of secretion. The role of these puta-
tive Rhodnius proteins in feeding is unknown.

3.4.2. Low complexity proteins

Two predicted protein sequences are almost identical
in their first 34 amino acids but diverge abruptly into
low complexity sequences containing repeats of glu-
tamic acid and glycine or lysine repeats yielding either
acidic or basic polypeptides named RPGE and RPPK
(Fig. 9A). The nucleotide sequences reveal that RPGE
has AGG repeats, while RPPK has AAG repeats in its
message (Fig. 9B). These types of nucleotide repeats
have been found previously to be associated with high
mutation rates, possibly associated with polymerase
slippage (Debrauwere et al., 1997; Wilson et al., 1998).
The amino terminal sequence DDANEEGAEDGTQG
was found by Edman degradation of one of the frac-
tions in the anion exchange column experiment
(Table 2), but it cannot distinguish between the two
predicted polypeptides. This amino terminal sequence
starts after the predicted cleavage of the signal peptide.
Finding this amino terminal sequence in a well retained
region of an anion exchange column suggests that the
actual sequence derived from RPGE, which is quite
acidic (Table 2). The function of these proteins is
unknown, but they might play a role in adhesion to
extracellular matrix or to cell membranes, as postulated
for the low complexity proteins of the Stevor, Rifin
and Var families from Plasmodium falciparum (Gard-
ner et al., 2002). Glycine and glutamic acid-rich pro-
teins have also been described in Aedes (Simons and
Peng, 2001; Valenzuela et al., 2002c) and Anopheles
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RPNPLA MRAYAALVVEVVALWMSGAE --BAS--G-E-LTvDTVKDENKDNEE TG - SHY 1 THYKLEGGTLOD I BKNETKEF LHKKTNDGK I REV F SNYNPNGGT Y SYD 1SEAS VKT EDGNNGRYTARN
BABP MRAYAALVLFVVALWMSEAE --GAS--G-&-STVDTVKDENKDNEETG- SHY 1 THYKLGDS TLEVCDKNGTKFLHOK TADGK T KEVF SN YNPNAKTY S¥DTEFAKYV S DFDGNNGRYTARN
RPNP4B MKTCMTT,TTATATLYT.SSARKSGAD-—KR&- DNPE PMTPEDVDKEEKD-AWY TTHYKFGADIGSNNDK Y @TK T T.0X TEND-NTKEVFS T DNTTTEAY SE¥T SESKKSSFDTTY GRYTARH
RENP4A MKSYTASLAVAILCLEAAV---GVS--GKETONAT AQTGEKKDOYENGGVWY VIDY - EDLEEDDY PRR Y SAALAAGTASG- KLKEALYHY DEVSKDT FYDVSELTOESS RYTANE
NP4 MKSYTSLLAVAILCLEG--~~-~ GVN--GARTKNALAQTGENKDKYENGDVHY VIDY - LDLEPDDV PRRY AR LAAGTASG - KLKEAL YHY DPKTQDT FYDVSELOVES L KYTANE
NP1 MKSYTALLAVAILCLFARY---GVE--GKeTKNALAQTGENKDKYENGDVWY VIDY-LDLEEDDYV PRRY@AALARCTASG-KLEEAL YHY DPKTQDT FYDVSELQEESP RYTANF
RPSNP2A MELYTALLAVTTLCLTSTM- -~ GVE--GDESTNT SPKOGLDKAKEESE - KWYVITHE - LDKDEO-VTDOYeS SFTPRESDE-TVREAL YHYNANKKT SFENTEEGKLESSET,—— - QUTARY
Np2 MELYTALLAVTILCLTSTM---GVS--GDESTN IS PKOGLOKAKYESG- KWYVIHE-LDKDBO-VTDQY[@sS FTPRESDG-TVREAL Y HYNANKKT S FENIGEGKLESSGL--—QYTARY
NP3 MEPYSALLAVTILCLTSTH- --GVS--GDWSTN 5 PKKGLDKAKYESG- THYVTHY -EDKDEG-VIDE Vs 5 FT PKESGG-TVREAL Y HENSKKKTS FYNLGEGKLGS SGV -~ ~QYTAKY
RPNP3B MEKFGAVIFFGLVMSTIAQAPPGPTLLDOS- KSVQEKSGENRQOFET G- VHFVIHAKDETE ST---—~ KYSISENSD--GELVVOYGTIGNRLOTFEI EKNGNSQAR- -~~~ HIFN
RPSNP3A MELYSALLAVTTLSLTSTM- - GVE--EDEEVNT T PRORLARAKEESG - THYRTHY - EDTHBR- VTBKFRFS FAPROSGE-TVEEAFYHFSSK

RPNP1A VIFNODGTKT DDRKLOVEYT DT -~ D¥SKYSVVYVEDPSAPEYY - - LYAVESRNFNTNG - VK DEVE TALGKVNLKT K DEFDATTLS - SEKEDEDTEKKEWDRSY PEYRKE ~— ——~—= -~
BABP VIVEKDGRKIDERTLQVSYIDT---DYSKYSVVII PAAPDYY——I.!BVQSRTENVKEDV(gRV‘EAAI.GKVGI.KL.;GL‘FDATTLGN ¥DDETLOKLIKOSFPNYEK-————=-———~
RPNP4B IQVDKVGKELEEHSITVT'!LDT———D!'DSYSVVY EIMENLFS-LYAVOSRSQTLNQDVETRVKSALNGYNEKLDKLSS IKDFG—~ DSTLNALLSKSFTHETKNASKEDGRIRE
RPNP4R KKWDKNGNVKVDVTAGNZY TFTVMY ADDSSALTH TELHKGNKDLGLLYAVENRNKDAAR - - G DRV SAVSAATEE Y SKET STKENN-—RAYDNDSLKSLLTK - - - === == =========
NP4 KKV DKNGNVKVAVTAGNY¥ TFTVMYADDSSALTHTMLEKGNKDLGLLYAVENRNKDAAA -~ GDRVKSAVS AR TEE FSKET STKENN- - $AYDNDSEKSELTK -~ -
NPl KKVEKNGNVKYDVTSGNYY T FTVMY ADDS SAL T/ Ii§LIKGNK DLGLLYAVENRNK DT NA - ~GDRVKGAV AR SBKFS DEL S TKDNK-—|§E¥DNY SEKSBETK—- === =============
RPSNP2A KTVEKK----KKKKKKN-~--FL--~APP-RAPHKT

NP2 KWDKKKAVLKEADEKNSITLTVLEADDSSALVH IBLREGSKDLGDLYIVETHOK DAEP -~ SARVESAVTOAGLOLSQEVGTKDLG-—BO¥DD-QF TS B~~~ == ~==-=======-=—--
NP3 N'IVDKKRKEIEPADPKDSYTLTVLEADDSSALVHI REGPKDLGDLYIVLSHOKTGEE - - SATVRNAVAQAGLKLNDEVDTKTLS -~ §T¥DD- QBT SM-~
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Fig. 4. The salivary nitrophorin (NP) family of R. prolixus. (A) Clustal alignment of novel NP with known NP (NP1, NP2, NP3 and NP4), and
with BABP (biogenic amine-binding protein). The signal peptide indicative of secretion is shown in gray background at the beginning of the sequen-
ces. Cysteines are shown in white with black background. Conserved residues are shown in black with gray background or in blue with gray back-
ground. The signal peptide is indicated in gray background at the beginning of sequences. (B) Phylogenetic tree showing the sequence distance
relationships between members of the family. The bar shows 10% divergence at the amino acid level. The numbers indicate the bootstrap value from
1000 iterations (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

(Francischetti et al.,
function is unknown.

3.4.3. Other putatively secreted proteins

2002b) salivary glands, but their

that it has no sugar-binding activity or that it is mono-
valent and thus does not cross-link with red blood
cells. RPSAGS is a protein with similarities to extra-
cellular proteins of the antigen 5 family, ubiquitously
found in the salivary glands of hematophagous Diptera

Eight additional full length cDNA clones code for
various proteins that have a clear signal peptide indica-
tive of secretion (Table 2). The predicted protein
sequences include RPMBL, which has similarities to
mannose-binding lectins including endoplasmic reticu-
lum-located lectins. In this latter case, this is indicative
of a protein with a housekeeping function. Previously,
we have not found hemagglutinating activity in Rhod-
nius salivary homogenates (unpublished), indicating
either that this protein is expressed in low amounts or

(Valenzuela et al., 2002c) and in other insects (Schrei-
ber et al., 1997). It has no known function. It is here
described for the first time in a Hemiptera. RPSOBP
has similarities to several proteins of the odorant-bind-
ing protein (OBP) family found in the mosquito An.
gambiae and in the moth Manduca sexta. Of interest,
the D7 family of proteins found in blood feeding Dip-
tera (Valenzuela et al., 2002a) is a distant member of
the OBP superfamily (Hekmat-Scafe et al., 2000). The
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RPAI-3 METIVALFMFGFLAEAQYGG- - - - PPKMSRGE&KDIYNRGVDNLNYKQFETGOWFLTHGERVSS - - TVSVNGD--KITFKLRGAQI LENVPDAK-
RPAI-1 MKTIVALFIFGFLAEAFCAN- - - - PPKMPTGEKDLNSKAVKDFKYNDFFKDEKWI LTHAERVTHPDAMETFTVNGN - - KITFSLGGKEVS®TLVKVEGAK -
RPAI-4 -MIIIVATFLGLLGHTFAAE----VTSIPT! ALSGKIMSGFDANRFFTGDWYLTHSRDSEVPVREEKYQTGSNLOLNFNGKNG-DVK®SGSTVSGNQ-
RPAI-2 -MMIIVATLLGLLGHTFAAAGASATTTMPKESLELKGDIKPGFDANQFFTGDWYWTHARDPKHPK KYQATSDLRLKFNGNSGSDV GAKVIGKE-
RPAI-6 METTIVVTEFGFLGCTECKR - - - -VP-TPEGERDVYNEADPNFKLKKFFNGSWYLTHAKHQNHSV. KFGMTMKPLEIKYEMGGVNVT@KGTKIKGTRR
RPAI-5 METIILITIFGILMIRRIQC- ---MQ---CD@ESVEAAGND - - - ~-GEFFKGNWQVTHSKIGAMFPI KLETSSQDGKKIIKLDDEEVGTLEIKETGSK~
RPAI-3 -FTKFN@KKSVSKTFSTE - - - ISVLATDNNNYALVY! VLEDDNYKDNTVVMQRQKQAPFPPALESEVGKFGHGLKKDSFKVLN@- - - - -~ -~ ----—
RPAI-1 -FTKFN®ELQG-KKFTAY - - -LSVLATDYKNYALVY! SHESP-TKDNFLVAQRRKQSTFPSALESQVSKVGFGLKKDSFKKFN@------------—
RPAI-4 GFYSFQETTTSGGSFTSY - - -MAVVETDYANYALLY! LYGSTTPKDNFLLFNRQSSGEIPAGLSTKLNQLELT - - - -SLNKLG@S - ----~--~--~--~
RPAI-2 GFYSFQ@TT-SGVTFTSF---MAVVETDYNNYALLY! RYGSSAVEDNFLVFNRQSSGGIPGGLTTKLSQLDLTPT--SFTKLG@T----~------~-~

RPAI-6 TE [EGNRGTPTPYTNYGATMSVIDTDY TNYAT
RPAI-5 -ESD®EVKKDN-NKITGL- - -FRVVSTDNSNYALVY T

KKNG- - KHEDNVFVLSRIRTGEPPEAAKQSTLOKLR - = == == == === === —mmmmmmm oo
KPAS - FPKDDYLILNKDKDAAVEPAAVENKLKELKMESKDF IDKKDVBEDLKIPKIKIISL
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Fig. 5. The salivary RPAI family of proteins in Rhodnius. RPAI-1 and RPAI-2 were previously reported Rhodnius platelet aggregation inhibitors.

For other details, see Fig. 4A.

role of these proteins in blood feeding is unknown
except for Hamadarin, which inhibits factor XII of the
clotting/kininase cascade (Isawa et al., 2002). RPSP450
is a cytochrome p450 of the CYP4 family, which
includes enzyme-hydroxylating arachidonic acid deriva-
tives having vasodilatory and immunomodulatory
function (Simpson, 1997). The secretory fate, substrate
specificity, and function of this cytochrome remain to
be investigated. Finally, three other protein sequences
were found with no significant similarities to known
proteins. These were named RPMYS-1, RPMYS-2,
and RPMYS-3. The amino terminal sequence predicted
for the mature RPMYS-1 protein was found in one of
the fractions of the HIC experiment (Table 2).

3.4.4. Protein sequences associated with probable
housekeeping functions

Three protein sequences predicted by full length
cDNA clones are indicative of a housekeeping func-
tion: RPUGALT, an UDP-galactose transporter
without a signal peptide and having eight predicted
intra-membrane helices by the TMHMM program

(Sonnhammer et al., 1998); RPMAPMOD, the hom-
ologue of Drosophila mapmodulin; and RPLET, the
Rhodnius homologue of the leptin receptor overlap-
ping transcript (Huang et al.,, 2001). RPLET has a
signal peptide indicative of secretion; it has four pre-
dicted intra-membrane helices, indicating it to be a
membrane protein probably associated with the lep-
tin receptor. Leptin is a peptide hormone associated
with feeding behavior, and the finding of the recep-
tor for this peptide in Rhodnius salivary glands is of
interest (Saper et al., 2002), as it may be related to
regulation of saliva secretion.

4. Discussion

A remarkable finding in the present work was the
large expansion of the lipocalin family of proteins
observed to be transcribed and, in several cases,
demonstrated to be expressed (Tables 1 and 2), in the
salivary glands of Rhodnius. Except for the NP, which
appear to be unique to the Rhodnius genus, lipocalins
similar to salivary proteins of North American species
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MKTIVALIFLGILT---------- LAHLSSSKKEEAMKNID- - - SQRFESGTWEVAHARNGS ST ILERE IT L TKNGDTVKSDTKBKFKQBKMKSEYTVHE
MKTIVALIFLGILS---------~ LVHLSSS PMNGLN - - - SQKFESGTWEY KSGSSTILEREITFKKND SNTKEKFCQGKSKTEYTVRE
MEKLVAVTFLGLVMSTIAQQPPQRPNFLA- - -QEOSVTEKSGFNKEQFF SGEM! KDETES KYTTSVNSEGKSVVQYGYNRYGK- - - ERKVS[S
MNRIILITIFGILTLR------~-- STHC I TNGE®DAVTAQEN - - IDEFFTGTH HSKGGARASL QFETSSDS TKLIKYELKEDGS ----YGTH[™

MKTIIAVTIFGILT---------- CAYAREGDDS I EKAMGDFKPEEFENG \HGGTS PAJ(SOKFITSGSKGFTOIVEI GYNKF[ES - - - NVKFO[S

TGKEKKGKVF——FiETREEADRSIRNNNEYKEDFTVMETDYKSFAVVi KKE——GK—EENVLIINKNKDADFPSAAKSTLEKAELKSENLNTRKLYDEK

TCKESKGKVE- - EK§TREEGERT I KONKEYEEEF[VAETDYNSEAVVEINKANKGK - - EENTLVINKKK-------------~-- KKKKKNFWAPPPH- - -
TOKNENSQAPY IFDEEVKEDEQTVLK- - - YEVOKTI LETDGNSH LOV--G--------- TQKKK--------=-=---- KKKKKKFLAPPPQ- - -
EGKPSNKDNEY PI{NSELKS - - - SFLN- - - [PAKFT A TKPTTRS - - ADDYFILNRQKDAEI PEEVQSTLTSLKLTSSSFTSSKDTET-
NQJJDNKNGE[EY SEKKSSD- - -N- - T - - EFEADFTF IGVEYENFASVERS I TFTSQPKEDDYLVLERTK - - - - - = === ===~~~ -~ - SDTDPDAKEI(- -
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Fig. 6. The salivary triabin family in R. prolixus. Four novel Rhodnius triabins are compared with the previously reported Triatoma protein. For
other details, see Fig. 4A.

of the genus Triatoma such as triabin (Noeske-Jungblut cDNA sequences similar to these three previously
et al., 1995), pallidipin (Noeske-Jungblut et al., 1994), described Triatoma lipocalins (Sant Anna et al., 2002).
and procalins (Paddock et al., 2001) have also been Although we know the function for some of these pro-
found in Rhodnius. More recently, the South American teins, as indicated above, most of these novel proteins
T. brasiliensis was shown to also contain salivary have unknown function. The probable scenario for the
RPPROCAL1 MKTIILITIFGILMIRR -~~~ - T0EMOBDBESVEAAGNDGE FFKENHQVIHSKIG- - AMFPI[BGKLETSSQDGKKI IKLDDEEVG- TLEIKETGS
Procalin MKTFIVITFIGILSY--------- AYADESENPEPMQGFSASQFYQGXWYVTHETSA - - XTLSE[N I LTTSNDNGKEF TVKHKY TKDGXVGEL II8EGQ
RPPROCALZ2 MEKFGAVIFLGLVMSTIAQRRQETTYLDQWOSIPEKSGFKKQQFFSGDWFMTHAKDATVDTL! KYTTLVNSEGKLEVQYRYFKKSEERKVI[®TQK

RPPROCAL1
Procalin
RPPROCALZ2

KES------- DEEVKK---=-----===-=--- DNKNYRTFQEE- - == == === == == m o o e o e e oL
ASANNK- FTYD@KFXGZ - - - TMEQVTRTAMDTDYNDYALYYL&TTYKXGPNAGKKEGHY ILSRRQP- - -NTEI PDALKTKTKDLNLKIEG-- - - - - -
DGNSQAPYIFK@VLIEGEEITYEYEVQHTIVETDGNSALLYRSLPVG- - - - YKYTDAFLVLNRQENGAVSREVONALSTHNLDVNKF I TRKNTVQRN

Fig. 7. The salivary procalin family in R. prolixus. Two novel Rhodnius procalins are compared with the previously reported Triatoma protein.
For other details, see Fig. 4A.
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Pallidipin MKVITAATIIGILMHEAFAEHSELMPPGDNFDLEKYFSIP-HVYVTHSRNGPKEQVEREYKTTKNSDETTTTTLVTSDYKTGGKP - - - - YHSELI T PKSGGRGOFSVEMEVPNG- - - -
RPPAL1 MNTTFAVIFLGILVVTNAA KKEPKDNFDSNEYFSAK-LEYVORVSEGPKQTVeI KFDFKRGSDG - - - KVTSNYDYYGSLON - - - -QNYHNS @NGTOR SNNKGQF SF! QTSDK- -~
RPPAL2 MLLLVVVEMTMVLIET- - -KeYDVTPMSDENSNKFEEK PKHM¥V THSRYEGRPGV[SREFYFTKHENG - - - SLSFNYDFNGNGKPEGKINSY TMN| TKDSYKKRKI SLV[EYQKFDWNKH
Pallidipin:. =semrecccessscccsmomonsmenser NGGKKKIHVETSVIATDYKNYALLQS@TKTES-G- - - IADDVLLLOTKKEGVDPGVTS - VLKSVNWSLDDWFS - -RS - ~DNME- - -
RPFRALL = = sedkisdbedessEswesbiiad be deedls SSATPNFQEEMTVMETDYNTFSVVS RSG--G---FSSGSILVLSKTDAGNGDSSE-LKKYLEEHSDITFEHERSKAN@TVSTIKNK-
RPPAL2 LGHIEFEDYEDEEEKEVVEEVVEKAEENAKNYDRKLSLKLTVLSTDYEEYALIHI KITLKGKKFFADNYVVFNIQEDAKLPEVLKTKFKEYGWEEDTFVT—-REM- - [@KNAGSKKKV

Fig. 8. The salivary pallidipin family in R. prolixus. Two novel Rhodnius pallidipins are compared with the previously reported Triatoma protein.

For other details, see Fig. 4A.

evolution of these lipocalins, as proposed for the evol-
ution of BPTI salivary proteins in Ornithodorus ticks
(Mans et al., 2002), must have been several events of
gene duplication and divergence of function. While
lipocalins have also been found in tick saliva perform-
ing similar functions as in Rhodnius, such as histamine
and serotonin binding (Paesen et al., 2000; Sangamnat-
dej et al., 2002), this contrasts with mosquitoes and
sand flies, where no salivary lipocalins have been
described to date, although another family of small
ligand-binding proteins, the OBP (Hekmat-Scafe et al.,
2000), have evolved into the D7 subfamily found in
blood-sucking Diptera (Valenzuela et al., 2002a). Of
interest, a putative OBP with a clear signal peptide
indicative of secretion was also found in Rhodnius.
When all known triatomine lipocalin sequences were
aligned and an NJ phylogenetic tree constructed, boot-
strap values indicated that these sequences have evolved

A

RPERK-1
RPKPR-2

beyond recognition of a common ancestor (Fig. 10),
although three clades were generated. Of these, a single
robust NP/BABP clade was observed; however, the
remaining sequences only produced robust associations
with two or three other protein sequences at most,
despite containing similarities to the Pfam triabin or NP
motifs. These results may indicate a long evolutionary
history for these proteins, or, alternatively a fast rate of
evolution, as has been suggested by comparing the dif-
ferences in salivary and housekeeping protein sequences
between Anopheles stephensi and An. gambiae (Valen-
zuela et al., 2003). The diverse nature of lipocalins has
been noted before (Flower et al., 2000), where a single
Trp is found conservatively at the amino terminal end
of the superfamily. The superfamily is clearly recogniz-
able by the fold structure verified by crystallization of
its several family members, which share primary
sequence similarities within each family.

MNAVYFLLVLSAGLLLTQADDANEEGAEDGTQGGDG- -DEETGEDEEEEEEEEEGEGGTEGGPQEEVEVK
MNAVYFLLVLSAGLLLTQADDANEEGAEDGTQGGEEKKEKEKKKKKKKKEKKKKKKKKKKKKKKKKKVAK

Kkhkkkkhkhhhhkhhhhhhhhkhkhkhrhhkhhhkk * * *

RPERK-1

RPKPR-2
* 4ok ok

KEGEGEGEEEGERRRRRRER - - -PRRRRRRRSRRRRRSRRRRRRKKKKKAVNNKKVAWNKRKSTGNGKQR
KKEAAKKKKSKERKIKAKERKVKAKKLKAKKVKAKKANAKKAKKKAKKRYLEKRKSLERVKKVKKTNIVE

* kK * *

RPERK-1 ATGAATGCTGTATATTTCTTACTTGTCTTATCCGCCGGETTGTTGCTARCCCARGCAGATGATGCARATGAGGAAGGTGCTGAAGATGGTACACAGGGTGGAGA
RPERK-2 ATGAATCCTGTATATTTCTTGCTTGTCTTATCCGCCGEGTTGTTGCTAACCCAAGCACATGATGCAAATCGAGGAAGGTCCTCAAGATGGTACACAGGGTGGAGA
%o dede ek otk sk sk ok ok ek ok e ke e e e e e gk ok ok ok ok e o o ke vk ok ok o e e ok ok ok vk vk e e o e ke b b b e e o ok sk vk ok o ok e e ke ok ok ok ok e e ok ok Tk v v ok e e e ok ok ok ok d g o o S sk ok b b ok o o ok ok e ok o e e ke
RPERK-1 TGGAGATGAGGARACAGGAGAAGAT NGNS N Nl el h el TP NeTe A AGGAGAGGGAGGARCGGARGGAGEGCCTCAGGAAGAAGT TGAAGTTARAARAG
RPERK-2 -GGAGRAGAAGGAGAAGGAGAAGAAGAAGAAGAAGAAGAAGAAGGAGAAGAAA AAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGARGAAGAAGGTGGCG
kkkkk *k Kk * khkhhkkhkkhkkx %%k kk %Kk *k k% k% K kk kkk kkhkk * Kk k kkkk k% * khkkkkkk *kkk *
RPERK-1 AGGGTGAAGGAGAAGGCGARAGAAGAAGGCGARAGAAGAAGGCGAAGGAGAGARAGGCCAAGAAGAAGGCGGCGAAGGAGAAGTAGGCGAAGGAGGAGAAGTCGA
RPERK-2 AAGAAGAAGGAGGCGGCAAAGARGAAG- - - - AAGTCGAAAGAGAGARAGATARAGGCGAAAGAGAGAAAGGTAAAGGCGARAAAACTAAAGGCGAAARAGGTAA
* ok khkkhkh kK khkk hhkkkkkkkx * Kk k kkk * KKk kkk Khkkkkhk KK * &k * % *hkkhkk kkk * kkkk * k kk%k *
RPERK-1 AGAAGAAGAAGGCGAAAGAAGAAGAAG-AAGGCGGTGAACAACAAGAAGGTGGCCTGEAACAARAGAAAARGCACTGGARACGGTAAACAAAGGTGARGAAGACA
RPERK-2 AGGCGAAAAAGGCCAACGCGAAAAAGGCARAGAAGARGGCGAAGAAGAGGTA - CCTGGAA - ARAAGARAARGC - CTGGARAGGGTAAA - AAAGGTGARGAAGACA
¥k kdkk dhkdkkdk ko Kk kk ok ok kk * * * o %k kkkdkodkkhk dkkhkdkokdkhhhkdkd hokdkhkhkdk dhhkdhkk ddkdkhkhdkkkhkhkdhddhhhk
RPERK-1 AATATCGTAGAATAGTTGATCAACCCCCCT - -CCCACCCAC
RPERK-2 AATATCGTAGAATAGTTGATCAATCCTTTCAACTTAAGTAC

dkok ok kdkk ok ok kkkkokkkk ok k  kk * * *

Fig. 9. The salivary RPERK family of R. prolixus. (A) Alignments of predicted protein sequences RPGE and RPPK. Other details as in the
legend for Fig. 4A. (B) Alignment of the nucleotide sequences coding for RPGE and RPPK. The identical nucleotides of the 5’ region are shown
in gray background. The GGA repeat region of RPGE and the AAG repeat region of RPPK are shown in reverse color.
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Fig. 10. Phylogenetic tree showing the sequence distance relation-
ships between the salivary lipocalins of triatomines. The bar shows
10% divergence at the amino acid level. The numbers indicate the
bootstrap value from 1000 iterations.

It was reported recently that expression of the sali-
vary NP of Rhodnius is differentially regulated during
insect development (Moreira et al., 2003). NP2 is the
only NP found in the salivary glands of Ist instar
insects; the number of NP expressed increases with
each insect stage. In the same work, two novel amino
terminal sequences from NP were presented and have
been named NP5 and NP6; however, the sequence for
NP6 in the paper actually represents the known
sequence for NP2, while the sequence shown therein
for NP2 has a single amino acid difference from that of
NP2, where a KK substitutes for a KW. NP5 differs on
a single amino acid from NP4, where a Q substitutes a
K. It is possible that the KK observed in one of the
novel sequences results from the normally low signal
produced by W (tryptophane) and a misreading of K
(Iysine) that “bled” from the previous Edman cycle. In
any case, neither of these two sequences was found in
our library.

It is interesting to observe that several of the novel
proteins described in Table 2 have amino terminal
sequences containing stretches of basic amino acids.
These are reminiscent of sequences found in proteins

interacting with plasma membranes and in the so-
called signal transduction sequences, which direct pep-
tide transport through cell membranes. Farnesylated
and myristoylated proteins are normally directed to the
surface of the plasma membrane, where they become
anchored by insertion of the lipid moiety into the mem-
brane bilayer (Murray et al., 1997, 1999; Leventis and
Silvius, 1998; Macia et al., 2000). Membrane targeting
for these proteins is mediated by C-terminal polybasic
sequences that interact non-specifically with negatively
charged phospholipid head groups. Experimental and
theoretical studies have shown that as few as five basic
residues (either arginine or lysine) clustered near the C-
terminal of a protein suffice for adsorption to a nega-
tively charged membrane. This is true even in the
absence of a protein-bound lipid moiety. Significantly,
the outer leaflet of the platelet membrane becomes
negatively charged following activation, due to
exposure of phosphatidylserine, and serves as a procoa-
gulant surface by promoting the assembly of coagu-
lation factor complexes. The polybasic sequences found
in salivary proteins may direct these proteins to the
surface of activated platelets, where they could bind
and/or release biologically active ligands, block the
interaction of coagulation factors with the membrane
surface, or interact with other proteins on the platelet
surface.

It is remarkable to observe the molecular complexity
and redundancy of the Rhodnius salivary transcriptome.
Expression and bioassay of the novel proteins will ulti-
mately characterize the salivary pharmacological com-
plexity and redundancy resulting from Rhodnius’
evolution to blood feeding.
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